The mathematical equation that caused the banks to crash

February 17, 2012

The Guardian:

The Black-Scholes equation was the mathematical justification for the trading that plunged the world’s banks into catastrophe

It was the holy grail of investors. The Black-Scholes equation, brainchild of economists Fischer Black and Myron Scholes, provided a rational way to price a financial contract when it still had time to run. It was like buying or selling a bet on a horse, halfway through the race. It opened up a new world of ever more complex investments, blossoming into a gigantic global industry. But when the sub-prime mortgage market turned sour, the darling of the financial markets became the Black Hole equation, sucking money out of the universe in an unending stream.

Anyone who has followed the crisis will understand that the real economy of businesses and commodities is being upstaged by complicated financial instruments known as derivatives. These are not money or goods. They are investments in investments, bets about bets. Derivatives created a booming global economy, but they also led to turbulent markets, the credit crunch, the near collapse of the banking system and the economic slump. And it was the Black-Scholes equation that opened up the world of derivatives.

The equation itself wasn’t the real problem. It was useful, it was precise, and its limitations were clearly stated. It provided an industry-standard method to assess the likely value of a financial derivative. So derivatives could be traded before they matured. The formula was fine if you used it sensibly and abandoned it when market conditions weren’t appropriate. The trouble was its potential for abuse. It allowed derivatives to become commodities that could be traded in their own right. The financial sector called it the Midas Formula and saw it as a recipe for making everything turn to gold. But the markets forgot how the story of King Midas ended.

Black-Scholes underpinned massive economic growth. By 2007, the international financial system was trading derivatives valued at one quadrillion dollars per year. This is 10 times the total worth, adjusted for inflation, of all products made by the world’s manufacturing industries over the last century. The downside was the invention of ever-more complex financial instruments whose value and risk were increasingly opaque. So companies hired mathematically talented analysts to develop similar formulas, telling them how much those new instruments were worth and how risky they were. Then, disastrously, they forgot to ask how reliable the answers would be if market conditions changed.

Black and Scholes invented their equation in 1973; Robert Merton supplied extra justification soon after. It applies to the simplest and oldest derivatives: options. There are two main kinds. A put option gives its buyer the right to sell a commodity at a specified time for an agreed price. A call option is similar, but it confers the right to buy instead of sell. The equation provides a systematic way to calculate the value of an option before it matures. Then the option can be sold at any time. The equation was so effective that it won Merton and Scholes the 1997 Nobel prize in economics. (Black had died by then, so he was ineligible.)

If everyone knows the correct value of a derivative and they all agree, how can anyone make money? The formula requires the user to estimate several numerical quantities. But the main way to make money on derivatives is to win your bet – to buy a derivative that can later be sold at a higher price, or matures with a higher value than predicted. The winners get their profit from the losers. In any given year, between 75% and 90% of all options traders lose money. The world’s banks lost hundreds of billions when the sub-prime mortgage bubble burst. In the ensuing panic, taxpayers were forced to pick up the bill, but that was politics, not mathematical economics.

The Black-Scholes equation relates the recommended price of the option to four other quantities. Three can be measured directly: time, the price of the asset upon which the option is secured and the risk-free interest rate. This is the theoretical interest that could be earned by an investment with zero risk, such as government bonds. The fourth quantity is the volatility of the asset. This is a measure of how erratically its market value changes. The equation assumes that the asset’s volatility remains the same for the lifetime of the option, which need not be correct. Volatility can be estimated by statistical analysis of price movements but it can’t be measured in a precise, foolproof way, and estimates may not match reality.

The idea behind many financial models goes back to Louis Bachelier in 1900, who suggested that fluctuations of the stock market can be modelled by a random process known as Brownian motion. At each instant, the price of a stock either increases or decreases, and the model assumes fixed probabilities for these events. They may be equally likely, or one may be more probable than the other. It’s like someone standing on a street and repeatedly tossing a coin to decide whether to move a small step forwards or backwards, so they zigzag back and forth erratically. Their position corresponds to the price of the stock, moving up or down at random. The most important statistical features of Brownian motion are its mean and its standard deviation. The mean is the short-term average price, which typically drifts in a specific direction, up or down depending on where the market thinks the stock is going. The standard deviation can be thought of as the average amount by which the price differs from the mean, calculated using a standard statistical formula. For stock prices this is called volatility, and it measures how erratically the price fluctuates. On a graph of price against time, volatility corresponds to how jagged the zigzag movements look.

Black-Scholes implements Bachelier’s vision. It does not give the value of the option (the price at which it should be sold or bought) directly. It is what mathematicians call a partial differential equation, expressing the rate of change of the price in terms of the rates at which various other quantities are changing. Fortunately, the equation can be solved to provide a specific formula for the value of a put option, with a similar formula for call options…

Read it all.

About these ads
Follow

Get every new post delivered to your Inbox.

Join 81 other followers

%d bloggers like this: